ZEOS

Ваш IP адрес: 54.82.57.154
Сегодня: 22.01.2018
08:53

Онлайн-библиотека учебно-методической литературы

Библиотека mirsmartbook.ru предлагает посетителям возможность чтения книг в режиме онлайн.
Книги, ГДЗ, решебники, готовые домашние задания, ЕГЭ, ГИА, наука и обучение, словари, все для преподавателей, школьников и студентов, русский язык, математика, физика, английский язык, алгебра, геометрия по всем классам, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 класс. А ты НАШЁЛ то, что тебе нужно? У нас Вы сможете найти все!
Новости Контакты Главная
Открыть-Закрыть рекламный блок

Меню сайта

Счетчики


Мы вконтакте

Время учиться

Реклама

Загрузка...

Теория чисел: учебник для студентов ВУЗов / Нестеренко Ю.В. / 2008г


21:52
Теория чисел: учебник для студентов ВУЗов / Нестеренко Ю.В. / 2008г

Аннотация:  Нестеренко Ю.В. Теория чисел: учеб. для студентов высших учебных заведений. – М.: Изд. центр "Академия”, 2008. – 272с.

Основу учебника составляют результаты элементарной теории чисел, сформировавшейся в трудах классиков — Ферма, Эйлера, Гаусса и др. Рассматриваются такие вопросы как простые и составные числа, арифметические функции, теория сравнений, первообразные корни и индексы, цепные дроби, алгебраические и трансцендентные числа. Обзорно освещены свойства простых чисел, теория диофантовых уравнений, алгоритмические аспекты теории чисел с применениями в криптографии (проверка больших простых чисел на простоту, разложение больших чисел на множители, дискретное логарифмирование) и с использованием ЭВМ.

 

Оглавление.

Введение
Глава 1. О делимости чисел
1.1. Свойства делимости целых чисел
1.2. Наименьшее общее кратное и наибольший общий делитель
1.3. Алгоритм Евклида
1.4. Решение в целых числах линейных уравнений
Задачи для самостоятельного решения
Глава 2. Простые и составные числа
2.1. Простые числа. Решето Эратосфена. Бесконечность множества простых чисел
2.2. Основная теорема арифметики
2.3. Теоремы Чебышева
2.4. Дзета-функция Римана и свойства простых чисел
Задачи для самостоятельного решения
Глава 3. Арифметические функции
3.1. Мультипликативные функции и их свойства
3.2. Функция Мёбиуса и формулы обращения
3.3. Функция Эйлера
3.4. Сумма делителей и число делителей натурального числа
3.5. Оценки среднего значения арифметических функций
Глава 4. Числовые сравнения
4.1. Сравнения и их основные свойства
4.2. Классы вычетов. Кольцо классов вычетов по данному модулю
4.3. Полная и приведенная системы вычетов
4.4. Теорема Вильсона
4.5. Теоремы Эйлера и Ферма
4.6. Представление рациональных чисел бесконечными десятичными дробями
4.7. Проверка на простоту и построение больших простых чисел
4.8. Разложение целых чисел на множители и криптографические применения
Задачи для самостоятельного решения
Глава 5. Сравнения с одним неизвестным
5.1. Основные определения
5.2. Сравнения первой степени
5.3. Китайская теорема об остатках
5.4. Полиномиальные сравнения по простому модулю
5.5. Полиномиальные сравнения по составному модулю Задачи для самостоятельного решения
Глава 6. Сравнения второй степени
6.1. Сравнения второй степени по простому модулю
6.2. Символ Лежандра и его свойства
6.3. Квадратичный закон взаимности
6.4. Символ Якоби и его свойства
6.5. Суммы двух и четырех квадратов
6.6. Представление нуля квадратичными формами от трех переменных
Задачи для самостоятельного решения
Глава 7. Первообразные корни и индексы
7.1. Показатель числа по заданному модулю
7.2. Существование первообразных корней по простому модулю
7.3. Построение первообразных корней по модулям рk и 2рk
7.4. Теорема об отсутствии первообразных корней по модулям, отличным от 2, 4, рk и 2рk
7.5. Индексы и их свойства
7.6. Дискретное логарифмирование
7.7. Двучленные сравнения
Задачи для самостоятельного решения
Глава 8. Цепные дроби
8.1. Теорема Дирихле о приближении действительных чисел рациональными
8.2. Конечные цепные дроби
8.3. Цепная дробь действительного числа
8.4. Наилучшие приближения
8.5. Эквивалентные числа
8.6. Квадратичные иррациональности и цепные дроби
8.7. Использование цепных дробей для решения некоторых диофантовых уравнений
8.8. Разложение числа е в цепную дробь
Задачи для самостоятельного решения
Глава 9. Алгебраические и трансцендентные числа
9.1. Поле алгебраических чисел
9.2. Приближения алгебраических чисел рациональными
Существование трансцендентных чисел
9.3. Иррациональность чисел еr и П
9.4. Трансцендентность числа е
9.5. Трансцендентность числа П
9.6. Невозможность квадратуры круга
Задачи для самостоятельного решения
Ответы и указания
Список литературы
 

 
 

 

Прикрепления: Картинка 1
Категория: Mатематика студентам | Просмотров: 468 | Добавил: novivirus | Теги: Нестеренко Ю.В. | Рейтинг: 0.0/0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Похожие материалы: